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ABSTRACT
As websites grow ever more dynamic and load more of their content
on the fly, automatically interacting with them via simple tools
like curl is getting less of an option. Instead, headless browsers
with JavaScript support, such as PhantomJS and Puppeteer, have
gained traction on the Web over the last few years. For various
use cases like messengers and social networks that display link
previews, these browsers visit arbitrary, user-controlled URLs. To
avoid compromise through known vulnerabilities, these browsers
need to be diligently kept up-to-date. In this paper, we investigate
the phenomenon of what we coin server-side browsers at scale and
find that many websites are running severely outdated browsers
on the server-side. Remarkably, the majority of them had not been
updated for more than 6 months and over 60% of the discovered
implementations were found to be vulnerable to publicly available
proof-of-concept exploits.
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1 INTRODUCTION
Nowadays, many applications that were originally intended as
ordinary desktop software, such as messengers or word proces-
sors, are moving to the Web. As a result, new technologies are
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implemented to support this transition. One of these are server-
side requests (SSRs), i.e., when the web server also acts as a client
to fetch additional information from other locations on the Web.
Such SSR implementations can often be triggered by unprivileged
users of a website, e.g., social networks showing a preview for all
user-submitted links.

Traditional SSR implementations resemble tools like wget or curl
and only fetch themainHTML document in a single request without
executing active content. However, the rise of JavaScript-heavy
frameworks and single page applications (SPAs) made this approach
largely incompatible with modern web development, as the relevant
content is often dynamically inserted afterward. Consequently, this
led to an increased usage of what we call server-side browsers (SSBs),
i.e., real browser like Headless Chrome running on the server-side.
By using such an SSB instead of a simple SSR, the back end can
not only send HTTP requests and receive the responses but render
entire web pages built with modern JavaScript frameworks.

However, running a real browser that anyone can summon to an
arbitrary URL naturally poses a much higher risk than downloading
a page without executing its code. Despite browser vendors’ best
efforts to harden their code [50], new vulnerabilities with high
or even critical security impact are found on a regular basis [e.g.
18, 19, 60]. Therefore, it is crucial to apply updates on time, to
avoid being vulnerable to publicly disclosed exploits. Google, for
example, just recently announced that they will shorten their stable
release cycle from six weeks down to four [20], in another effort to
tighten the patch gap, i.e., the time between a security bug fix being
merged into their open-source repository and the release of a new,
stable version that includes this bug fix for all users [38]. While
modern browsers apply updates automatically for end-users [32,
61], popular SSB implementations do not, e.g., because part of the
automation API could have changed and an unattended update
could silently break an important service [34]. Consequently, this
opens a unique and dangerous attack surface on the server-side. As
the amount of features and supported file formats in browsers is
only increasing, so is the attack surface, e.g., through the addition
of the new WebAssembly format [39, 63].

In this paper, we systematically explore the phenomenon of
these outdated server-side browsers in the wild. We first develop a
methodology to automatically discover SSBs at scale that entices
servers we visit to request a website under our control. We find
that about 6% of all domains that we crawl do visit our monitoring
server afterward and 16% of those even did so with a real browser
that had JavaScript enabled. To determine which of these SSBs are

https://doi.org/10.1145/3488932.3517414
https://doi.org/10.1145/3488932.3517414


vulnerable to known exploits, we use a fingerprinting technique to
extract their browser version, without needing to rely on potentially
spoofed user agent strings. Thereby, we find that over 60% of all SSB
implementations in the wild are vulnerable to publicly available
exploits and more than half of them even had not been updated for
over 6 months.

To summarize, we make the following contributions:

• We show how to automatically discover server-side browsers
in the wild (Section 3).

• We present a methodology to discern human visitors from
bots based on a combination of timing information and bot
indicators. Moreover, we also accurately determine which
browser versions these bots use, even if they send spoofed
user agent information (Section 4).

• We conduct the first large-scale study of SSBs and find that
over 60% of the 254 sites we discovered to make use of an
SSB are vulnerable to publicly available exploits (Section 5).

2 SERVER-SIDE BROWSERS
In this section, we first introduce our terminology and then describe
multiple use cases for server-side browsers that can not be solved
with simpler alternatives, showing their usage is often intended
and unavoidable. After that, we introduce the most popular SSB
implementations and discuss the potential security pitfalls posed
by this technology.

Terminology. Basically, SSRs are conducted each time one server
requests data from another, e.g., from a service offering an HTTP
API. These SSR implementations are characterized by the fact that
they only handle the connection on the HTTP level, but treat the
returned content as a string or simple data format like JSON. In
particular, they do not parse and render HTML, do not load em-
bedded resources, and do not execute active content like JavaScript
code. Popular SSR implementations include command-line tools
like curl and wget, as well as the http package for Node.js, and
the file_get_contents function for PHP. SSBs, on the other hand,
are the equivalent of running a normal desktop browser on the
server-side. The obvious difference here is that there is no human
interacting with a visible graphical user interface involved. Instead,
these SSBs are fully automated tools running in the background.
Under the hood, they support exactly the same features as their
desktop equivalent, in particular, they parse and execute all active
JavaScript content unless this is explicitly disabled. Our terminol-
ogy implies that each SSB also conducts one or more SSRs while
loading a webpage, but not each SSR necessarily comes from an
SSB.

Use cases. There are various use cases that require running a
fully-featured browser on the server-side and can not be solved
by resorting to simpler, SSR-like solutions. For example, major
search engines such as Google and Bing rely on SSBs for their
web crawlers [2, 4]. In principle, statically crawling a web page
without rendering it would be more convenient as it uses a lot
less resources. Yet, as many of today’s web applications are built

dynamically with JavaScript, web crawlers need to be capable of ex-
ecuting this scripting language to properly index the page’s content.
Therefore, using an SSB with a native rendering engine increases
the accuracy of the indexed content, as SPAs might only show
a blank page if JavaScript is disabled. Another use case are web
security services like Symantec Sitereview [5] and VirusTotal [6]
offering ratings and categorizations for URLs, allowing users to
check whether a website is potentially malicious. As previous work
finds, a significant percentage of search results and ads employ
cloaking techniques [52, 83, 84] which involve blocklisting of IPs
and user agents affiliated with search engines or detecting the ab-
sence of JavaScript execution. This way, they try to hide from these
services by serving harmless content to web crawlers while serving
malicious sites to potential victims [44]. These techniques make it
especially important for providers of web security scanners to use
real, automated browsers to mimic a human user in order to scan
websites from a human’s and not from a bot’s perspective.

Automated Browsers. Generally, there are several different op-
tions available to implement an SSB, of which we introduce two in
more detail in the following. PhantomJS [41] is a headless browser,
i.e., a browser that can be executed in the background on a server
without a graphical user interface. It is based on the rendering
engine Webkit and can be controlled via a JavaScript API. After its
launch in 2011, PhantomJS enjoyed great popularity for a few years.
A total of about 50 million downloads from npm highlight the suc-
cess of the framework. However, at the timing of writing, the last
official release was about four years ago and its creator announced
in early 2018 that the development will be discontinued [40]. Sur-
prisingly, there are nearly 14 million downloads registered for the
package since it was officially discontinued [81]. As an alterna-
tive, Headless Chrome allows interacting with a website using all
of Chrome’s features without having a visible user interface. Inter-
nally, it utilizes the DevTools [36] protocol to communicate with
and control a browser instance. With Puppeteer [34], the Chrome
team also provides a high-level API in form of a Node library to
control a Chromium instance since the beginning of 2018 [11]. In
contrast to PhantomJS, download counts for the puppeteer package
are continuously increasing with a total of 163 million downloads
since its release [82].

2.1 Attack Scenario
As long as the URL in an SSR/SSB implementation is hard-coded
to visit only one trustworthy server, running them is generally
unproblematic. Problems arise, however, if this URL depends on
user input, e.g., in all the previously outlined use cases. An apparent
threat in this scenario are server-side request forgery (SSRF) attacks.
In the most common SSRF scenario, an attacker tries to bypass
firewall rules to gain access to privileged parts of the network.
In the simplest case, submitting an internal IP address such as
http://10.0.0.1 to a vulnerable SSR service would result in that
server forwarding the internal content to the external attacker, as
shown in part (a) of Figure 1. Other, similar attacks against SSRs are
abusing them as an attack proxy, e.g., in a denial of service (DoS)
attack, or abusing them to confuse client-side filters integrated into
browsers in a so-called origin laundering attack. The high prevalence
of SSRs as a convenience feature, as well as its increasing severity



due to complex architectures and higher adoption rates of cloud
and web services has earned SSRF a place in this year’s OWASP
Top 10 [67]. These scenarios and their potential consequences were
studied in detail in a paper on SSRF attacks published in 2016 by
Pellegrino et al. [69].

On the other hand, one so far over-looked scenario is directly
attacking the implementation of the requesting mechanism, i.e.,
the headless browser itself. Since these SSBs are based on a real
browser and visit arbitrary, attacker-supplied URLs, they too are
vulnerable to JavaScript exploits like every other desktop browser.
Successful exploitation means the attacker could gain control of the
server the SSB is running on. As part (b) of Figure 1 shows, in this
scenario, there is no request forged and no deputy confused, instead
the attacker uses the request service as intended and prompts it to
visits an external website under the attacker’s control. From there,
they can launch their JavaScript payload and probe the visiting
user agent for exploitable vulnerabilities. If successful, they might
be able to completely compromise the server and begin lateral
movement through the network from there.

A major threat to all browsers is the large number of publicly
disclosed vulnerabilities. Google Chrome, for example, enjoys a
rapid update cycle to keep up with security and new features of the
constantly evolving web ecosystem. A major update of the stable
channel is pushed to the public every six weeks [33] while minor re-
leases come every two to three weeks according to Chrome’s update
strategy [35]. Google even announced plans to further increase the
frequency of their updates and plan to release a major update every
four weeks by the end of 2021 [20]. They aim to further reduce the
patch gap, i.e., the time between a security bug fix being merged
into their open-source repository and the release of a new, stable
version that includes this bug fix for all users [38].

Yet one main difference between headless browsers and their
desktop equivalent is the way updates are handled: While desk-
top browsers usually update automatically nowadays, headless
browsers require manual intervention to keep up with security
patches. Not updating these SSBs automatically has good reason,
since the automation API or other important features might have
changed and thus could silently break tools that rely on them. For
example, Google writes in the official Puppeteer repository: “We
see Puppeteer as an indivisible entity with Chromium. Each version
of Puppeteer bundles a specific version of Chromium – the only
version it is guaranteed to work with. [...] This is not an artificial
constraint.” [34] This means there is a significant risk of outdated
versions of SSBs still running in the wild if they are not constantly
monitored and maintained. In this paper, we thus focus on auto-
mated but outdated browsers that we can lure to visit a site under
our control to (theoretically) deliver a publicly available JavaScript
exploit from there. To summarize, we consider the following to be
in and out of scope for this work respectively:

In scope. All automated, server-side browsers that run a real
rendering engine and execute JavaScript, regardless of which au-
tomation framework or headless browser implementation they use.

Out of scope. All SSR implementations that do not use a real
browser (e.g., curl) or use one, but have disabled JavaScript exe-
cution. Also, all SSRF attacks like accessing the internal network,
bypassing URL filters, or origin laundering.
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Figure 1: Comparison of SSRF and SSB attacks

2.2 Research Questions
So far, we have seen that running a fully-featured browser on the
server-side is a relatively recent phenomenon, probably caused by
the rise in complexity in modern websites. The popularity of the
now-defunct PhantomJS and its de-facto successor Puppeteer high-
light the relevance of their use cases. However, the extent of usage
and the security implications of running such an SSB as a service,
i.e., where the attacker fully controls the URL destination, have—so
far—not been studied. To better understand this phenomenon, we
investigate and answer the following research questions:

• RQ1: How many websites trigger SSRs, i.e., visit other web-
sites based on user-provided URLs?

• RQ2: How many of these SSRs are SSBs, i.e., use a real
browser in their back end?

• RQ3:Which browsers are used in these SSB implementations
and at which major version?

• RQ4:Howmany of these SSBs are running outdated browsers
vulnerable to publicly available exploits?

3 DISCOVERING SSRS
As SSRs are implemented in the back end of a web application, their
presence is not immediately obvious by accessing the front end, i.e.,
the loaded website with HTML, CSS, and JS content. Therefore, we
require an empirical method to interact with these websites and
reveal any potential SSRs. This means we need to automatically visit
websites and provide them with unique URLs pointing to a server
under our control. If we afterward observe a request to the URL we
provided, there is a good chance that we successfully triggered an
SSR. In general, there are three ways to entice the targeted server to
visit our monitoring server: First, we can supply additional headers
that contain our URLs in each of our requests, e.g., in the Referer
header. Second, we can modify existing URL parameters in GET



requests that contain encoded URLs pointing to other domains and
instead make them point at our domain. Third, we can submit our
URLs in theHTTP body of a POST requests, e.g., by filling out HTML
forms on the pages we visit. In the following, we will describe each
approach in more detail.

3.1 HTTP Headers
HTTP headers offer a convenient option for transferring metadata
to a web server. Usually, they serve various purposes such as trans-
mitting user agent strings, language preferences, or cookies with
session information. However, there are also some lesser-known
headers like True-Client-IP or Forwarded that usually contain host-
names or IPs and can cause certain systems like reverse proxies
or load balancers to reveal themselves and send requests to these
remote hosts [72]. Moreover, the Referer header is of particular in-
terest to analytics software, which often visits the referring site to
analyze its content with the aim of identifying what drives visitors
to its own website [71].

In a preliminary study, we investigated the impact of 25 different
headers taken from the Collaborator Everywhere project [73], which
is a plugin for the Burp Suite proxy [3] that injects specific headers
of this type into every intercepted HTTP request. During our crawls
with these additional headers, we found that with 98%, almost all
SSRs triggered by headers were caused by supplying a URL in the
Referer header. On the other hand, some of these other 24 headers
decreased the amount of successfully visited websites by up to 28%.
Due to these results, we only use the Referer header and do not
send other headers to discover SSR implementations.

3.2 URL Parameters
To discover parameters that could trigger an SSR, we scan the URL
query string of all HTTP requests to all the included resources that
were requested while loading a page. If the query string of one of
these requests contains one or more (potentially encoded) URLs,
we mark its position as a potential SSR candidate. Moreover, we
also search existing query keys for interesting names like url, host,
or domain and mark their value as an SSR candidate, regardless
of if their value contained a URL or not. We then replace each
SSR candidate separately with a unique subdomain pointing to our
monitoring server and request the resulting URL again. Figure 2
contains our complete list of 22 SSR candidate names and is based
on previous research on the detection of SSRF vulnerabilities and
bug bounty reports [15, 27, 45, 73].

action, addr, address, domain, from, host, href, http_host, load, page, preview,

proxy, ref, referer, referrer, rref, site, src, target, url, uri, web↪→

Figure 2: The full list of 22 additional SSR URL parameter
candidate names

It is important to note that only one parameter is modified at
a time while the other remains unchanged, to increase the likeli-
hood of the back end successfully processing our request. If our
monitoring server then receives an incoming HTTP request on the
respective unique subdomain, we can trace it back to the initiat-
ing parameter. Compared to the previously presented approach of

inserting additional HTTP headers, this procedure thus requires
multiple requests to the same resource—one for each SSR candidate.

http://example.com/some/service?param=foo&id=42

&url=http%3A%2F%2Fsome-other-service.example.org&exec=yes↪→

http://example.com/some/service?param=foo&id=42

&url=http%3A%2F%2Funique-subdomain.our.monitoring&exec=yes↪→

Figure 3: One example of an URL before and after our re-
placement of SSR candidates

3.3 HTML Forms
HTML forms often accept URLs in one or more fields and thus
present another opportunity to discover SSRs. However, unlike
URL parameters that can be collected by simply visiting websites,
these POST requests usually have to be triggered by user interac-
tion. Moreover, many forms implement both client- and server-side
validation mechanisms designed to reject any input entered in the
wrong format. Hence, to submit a form we need to fill each field
with the correct input of the expected data type while inserting
as many SSR–URLs as possible. For this, we extended our crawler
with a form-filling algorithm, which tries to satisfy the constraints
of the form while at the same inserts as many URLs pointing to
our monitoring server as possible. A more detailed description of
this approach as well as the pseudo code for our form filling algo-
rithm can be found in Appendix A. Compared to the approach for
URL parameters, this procedure does not allow us to simply collect
submission requests and resend them later with arbitrary modifica-
tions as often as we want. Due to security measures such as CSRF
tokens, submitting the same form multiple times or after a long
delay would cause errors on the server-side and the transmitted
data would be discarded. Therefore—and also for ethical reasons as
outlined next—we only submit each form exactly once, potentially
inserting a URL pointing to our monitoring server into multiple
fields of the same form

3.4 Ethical Considerations
Since our work requires submitting POST requests to websites, we
have to make sure that our method is as non-intrusive as possible.
First of all, we do not provide an actual attack payload and instead
only provide them with a URL that leads to an innocuous moni-
toring server. Moreover, we try to reduce the number of outgoing
requests to these websites providers as much as possible. Since
some forms like search bars or newsletter subscription forms may
be present on multiple subpages of the same domain, we use a form
deduplication technique to significantly reduce the number of form
submissions. Finally, at both the experiment’s subdomains and the
root URL of our monitoring server, we deploy a disclaimer page
explaining our research and presenting our organization’s imprint
and data protection regulation, intended for human visitors. We
also offer anybody to opt-out of further crawls and respond to these
requests in the time frame of about one business day. During our
final data collection, we received and obliged to 5 opt-out requests
on top of the 27 domains already blocked from previous crawls.



4 IDENTIFYING SSBS
In this section, we discuss the other end of our setup, i.e., the mon-
itoring that collects data for all incoming requests. In particular,
we need a way to accurately determine which of these incoming
requests are from vulnerable browsers. The most conclusive way to
test if the connecting browsers are vulnerable would be to use real
JavaScript exploits and test which of them successfully compro-
mises the visitors. Clearly, this would be neither legal nor ethical
and is not an option. Instead, we resort to safe fingerprinting tech-
niques that can determine the most likely user agent of our visitors
and then map this information to a list of known vulnerabilities.

4.1 JavaScript Metadata
First of all, our server records some basic information like the
IP address, User-Agent header, and timestamp for each incoming
request. To distinguish simple SSRs from real browsers, we then
reply with an HTML page that contains one small inline script. If
this script executes, it sends a notification to our monitoring server.
This way, we can not only discern visitors that execute JavaScript
from those who do not but also collect additional metadata and
send it to our back end. We specifically designed this website to also
work with very old browsers, by not using any HTML5 features and
writing our inline script according to the ECMAScript 5 standard,
which was released in 2009 [1]. This website also does not include
any external resources to load with a single request and the inline
script executes in about 5 ms, to make sure that the notification is
sent to our server before the page is closed again.

4.2 Bots vs. Human Visitors
While discerning SSR tools with and without JavaScript is straight-
forward with our monitoring website, discerning bots from humans,
on the other hand, is a much more difficult task and often solved
by either behavioral observation [47] or with CAPTCHAs [9]. Ob-
serving visitors over a series of requests allows finding indicators
for bot-like behavior. We, however, do not run a real website with
content that we want to protect from scraping, and instead need to
discern humans from bots within a single request to our monitor-
ing back end, making behavioral analysis not an option. Using a
CAPTCHA is similarly not applicable, because every human visitor
to our website that is asked to solve one, but instead closes the tab,
would be misclassified as a bot. Previous work has shown that no
programmatic bot indicator holds on its own and that even com-
mercial fingerprinting companies lack robustness against concealed
crawlers [80]. However, we have the unique advantage of knowing
when to expect incoming bot traffic, because we first supply unique
URLs to other websites in our attempts to trigger visits to our moni-
toring server. For this reason, our bot detection is based on the time
period that passed between our initial request and the received SSR.
We choose a very narrow time frame of 3 minutes starting from our
initial trigger, because chances are extremely high that requests
in that period come from a completely automated system. Even
the most zealous administrator is unlikely to respond that fast to
a new URL submitted to their website. Moreover, we extend this
timing-based approach with additional bot indicators as described
in the following subsection.

4.3 Additional Bot Indicators
To better incorporate slower bots, we add several additional bot
indicators and increase our timing threshold accordingly. For this,
we use the following insight: even though bots might try to conceal
themselves as human visitors, hardly any human visitor will try to
mimic an automated browser. Therefore, while the absence of bot
properties is rather meaningless, their presence presents—to some
extent—a useful indicator. In the following, we briefly present four
bot indicators and then describe how we combine them with our
timing-based methodology.

Known crawler user agents. Lists of known crawler user agents
or patterns to detect those are widely available [e.g. 10, 56]. While
crawlers regularly spoof the user agent information, we can assume
that human visitor mimicking a known crawler are unlikely. There-
fore, if the requested user agent is known as a bot or crawler, we
use this as one supplemental indicator for our evaluation.

Inconsistent user agents. When bot operators try to conceal their
automation tools, e.g., by altering the user agent string, inconsisten-
cies can emerge when comparing the user agent as reported by the
HTTP headers with the values reported by navigator.userAgent

and navigator.platform. For example, a HTTP user agent of Mozil-
la/5.0 (Windows NT 10.0; Win64; x64; rv:79.0) is clearly spoofed, if
navigator.platform reports to be running on Linux x86_64. While
the values reported by the navigator object are also not trustwor-
thy, inconsistencies in the reported user agent values from different
sources are hard to explain with normal user behavior.

Inconsistent screen dimensions. Typically, crawlers operate in
headless mode, i.e., the visited page is not rendered to decrease
performance overhead, which can lead to mismatches in the re-
ported screen resolution of the browser. Therefore, if the available
inner screen dimensions exceed the reported outer dimensions,
we consider the data as inconsistent and use it as a bot indicator.
This reportedly does not necessarily hold true for mobile operating
systems [8, 68] so we only apply this indicator for visitors who do
not claim to be mobile devices.

Missing plugin information. Another consequence of specifically
running Chromium-based browsers in headless mode, is that they
do not support browser extensionswhen runningwithout a GUI [24].
Under normal circumstances, Chrome always reports several plu-
gins when reading the value of navigator.plugins, as the Chrome
PDF Viewer and the Native Client are pre-installed. However, for
Headless Chrome these plugins are missing, resulting in another
useful bot indicator that is unlikely to apply for human visitors.

For each of these four indicators that is present during the visit,
we double the initial threshold of 3 minutes during which we con-
sider requests to be originating from bots. Therefore, if three of the
four additional indicators would be present, the request would be
labeled as bot traffic if it arrives within the first 24 minutes after
our visit to their page. To summarize, we consider every visitor
to be a human, until we find some hard indicators that they have
to be a bot, e.g., because they are too fast and provide inconstant
information about themselves. While this approach still overlooks
slower bots, as well as particularly stealthy bots, we get a very
reliable data set with little to no false positives, as it is very unlikely



that human visitors have these indicators present and even if they
do, it is even more unlikely that they are also fast enough for us to
flag them as bots.

4.4 Feature Fingerprinting
Now that we know which visitors are bots running a server-side
browser, we need to determine their browser version in order to
identify those that are based on outdated browsers. However, as
already described, the user agent string is trivial to spoof and some-
times even the user agent provided in the HTTP header and the user
agent according to navigator.platform do not match—a clear indi-
cation of intentional manipulations. Therefore, the inline script on
our monitoring website conducts a JavaScript feature fingerprinting
that tests which features are supported by the visiting browser, to
estimate the most likely actual user agent in a more reliable fashion.
For this fingerprinting, we first probe for a few specific features to
distinguish between the different browser products. For example,
the presence of InstallTrigger is a unique indicator for the Fire-
fox browser [77]. Now, to also distinguish between the different
browser versions, we need amore sophisticated approach that works
as follows: First, we compile a list of all JavaScript objects and prop-
erties of the global window object once, using the latest alpha release
of Google Chrome. It is important to note, that we compiled this
list while visiting an HTTP origin, as some newer features such as
sensors are only available on a HTTPS origin. While our monitoring
website is served on both protocols, for this fingerprinting we only
rely on features that are always available, regardless of the protocol.
At the time of writing, this list was compiled using Chrome 89 and
contains 590 entries, such as AggregateError, SVGAngle, Uint8Array,
and WebGLQuery. We embed this whole list into our inline script so
that for each visitor with JavaScript enabled the presence of each of
the 590 features is tested. We then encode the presence or absence
of each feature into a long binary string and send this feature vector
to our monitoring back end, along with the previously described
other metadata.

4.5 Resulting User Agent
In our back end, we now need to decode this collected feature vec-
tor and map it back to the most likely browser versions. For this,
we make use of the raw compatibility data provided by Mozilla’s
MDN [59], which is available on GitHub in their browser-compat-
data repository [58]. As an example, their data shows that the
AggregateError object is available in Chrome and Edge since v85,
in Firefox since v79, in Safari since v14, and not supported by
Opera. With this information for each of the 590 different features,
we can narrow down the most likely browser version for each
individual feature string. As the examples in Table 1 show, even
with only a handful of features the range of possible versions can
be quite small. For example, if a visitor supports WeakRef but not
AggregateError then they are using Chrome, as Firefox introduced
both features in the same update and all other browsers do not sup-
port WeakRef yet. Moreover, as WeakRef was introduced in Chrome
84 and AggregateError in Chrome 85, we now even know their ex-
act major version for certain. However, it should be noted that not
all fingerprint vectors are as distinct as this example and sometimes
two successive releases might be indistinguishable.

Table 1: Five selected features and since which release the
different browsers support them. The combination of pres-
ence (✓) and absence (✗) of the different features concludes
that example 1 must be exactly Chrome 84 and example 2
must be Firefox 79 or newer.

Feature Supported since Example
Chrome Firefox Opera Safari 1 2

AggregateError 85 79 — 14 ✗ ✓
MutationObserver 26 14 15 7 ✓ ✓
RTCCertificate 49 42 36 12 ✓ ✓
TrustedScript 83 — 69 — ✓ ✗
WeakRef 84 79 — — ✓ ✓

This means we now have three potentially different user agents:
from the HTTP headers, from the JavaScript navigator object, and
from our feature fingerprinting. If these three agree with each other,
then there is a high chance that the provided user agent information
is indeed correct.When they do not matchwith each other, we could
in doubt rely on the fingerprinting results as it is the most difficult to
spoof. Yet, there is a chance that some administrators intentionally
disabled a few features as an additional security measure. Therefore,
we instead use the user agent with the highest browser version of
the three as a conservative estimate, which in doubt defaults to the
most secure of the three.

5 SSBS IN THEWILD
To answer the research questions outlined in Section 2.2, we conduct
a large-scale study on SSBs in the wild on the 100,000 most popular
websites according to the Tranco list [51] generated on March 2,
2021. On each website, we visit same-site links up to a depth of 10 or
until we visited 50 pages, whichever comes first. If there are more
than 50 same-site links on the landing page already, we randomly
select 50 from among them. On each page, our crawler waits up to
30 seconds for the load event to trigger, otherwise, we flag the site
as failed and move on. After the load event, we wait up to 3 more
seconds for pending network requests to resolve to better handle
pages that dynamically load additional content.

We started 60 parallel crawlers using Chromium 89.0.4389.72
on March 3 and finished the crawl about one week later on March
11. Of all the sites of the initial 100,000, we could only successfully
visit about 79%. Of those that failed, about 8% were due to network
errors, in particular, the DNS lookup often failed to resolve. In
another 4%, the server returned an HTTP error code on the initial
front page already. Additionally, 5.5% of these sites redirected to
another domain which we subsequently discarded, since they are
either duplicates like blogger.com and blogspot.com, or redirect to
a location that is not part of the top 100k and thus out of scope. The
remaining 3.5% failed due to various other issues, like failing to load
before our 30 seconds timeout hit. In total, we successfully visited
around 2.6M pages on about 79k sites. On these, we discovered
22.2M forms and submitted about 2.5M of them, the rest were
considered duplicates. Additionally, we sent a total of 18M modified
GET requests to about 5.6M different URLs in an attempt to discover
SSRs that are triggered by URL parameters.



5.1 Postprocessing
First of all, we only recorded requests to subdomains with a unique
ID generated for each possible SSR candidate on each website that
we visited. Thus, generic requests from scanners and crawlers are
not part of this data. For a meaningful analysis, we also have to
prevent that our data is dominated by a few big companies, as
they sometimes offer third-party scripts that trigger SSRs, e.g., Dou-
bleClick and WordPress. These would then cause an incoming re-
quest any time we visit a domain that includes one of their affected
scripts. Therefore, we use the target domain for attribution, e.g., if
we submit a form included on a.com with an action URL to b.com
that triggers an SSR, we consider b.com as the target domain and
thus responsible for the incoming request, as it does matter less
where we found this form and more where we submitted its data to.
The same applies to SSRs triggered by modified URL parameters of
third-party scripts.

Moreover, since these third parties are by nature present on a lot
of websites, they would in total also send the most requests by far.
As these companies also usually have access to vast IP ranges and
heavily distribute their workload, we apply further deduplication
based on the autonomous system number (ASN) — and not based
on the IP address. Therefore, we define unique requests as those
requests where the tuple <target domain, asn, user agent> is unique.
If there are multiple, non-unique requests we use the fastest and
ignore the rest. Additionally, we specifically exclude all requests
from the Googlebot user agent, since their analytics products are
widely used and result in many SSB visits from Google servers that
would skew the analysis.

Finally, we only consider incoming requests that we received
within one week of visiting the page. Otherwise, popular websites
with a high rank, i.e., sites that we visited at the very beginning,
would have had almost twice as much time to send an SSR than
websites which we visited towards the end of our one-week-long
crawl. Obviously, we continued the data collection for one week
after we had visited the last page with our crawler.

5.2 All Incoming Requests

RQ1: How many websites trigger SSRs, i.e., visit other websites
based on user-provided URLs?

In total, we recorded over 168,000 incoming requests, as Table 2
shows. Of these requests, we only consider 11,367 requests as unique
according to our definition in Section 5.1. The JavaScript usage is
quite low when looking at all recorded requests with 4.5%, however
this is to be expected since by far not all automated requests need
the capabilities of a full browser. Yet these 7,500 requests with
JavaScript enabled already cover around 17% of the unique requests,
as the total number of requests is heavily skewed towards a few
third-party services that still often use simple SSR implementations
without a real browser. Overall, we triggered requests on 4,850
different domains of the initial 100,000. Therefore, our experiments
enticed about 6% of the successfully crawled 79,000 sites to visit us
back at a URL we presented. And about 16% of these domains even
did so with a real browser that has JavaScript execution enabled.
Additional analyses about which of the triggers, i.e., HTTP headers,

URL parameters, and HTML forms, were the most effective can be
found in Appendix B.

Table 2: SSRs recorded during our large-scale study.

# Total # with JavaScript

All requests 168055 7503 (4.5%)

Unique requests 11367 1973 (17.4%)
Unique domains 4850 760 (15.7%)

Unique IPs 8636 1571 (18.2%)
Unique AS 917 610 (66.5%)

Looking into the temporal dimension, we found that around 35%
of all requests arrived within 1 minute after we had visited their
page, as Figure 4 shows. Yet, these 35% of requests in the first minute
already cover about 50% of all domains due to repeated visits. Thus,
on about 50% of sites where we could trigger any SSR, we had at
least one visit within the first minute. On the other hand, the same is
only true for 22% of the sites that visited us with JavaScript enabled.
There are multiple reasons for this, e.g., SSBs could operate a bit
slower than plain SSR implementations, and there are also likely
humans still distorting the data, who manually visit our website
much later after discovering our URL in their logs.
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Figure 4: Incoming requests accumulated over time. Note
the non-linear time axis.

5.3 Prevalence of SSBs

RQ2: How many of these SSRs are SSBs, i.e., use a real browser in
their back end?

So far, we analyzed all incoming requests that we recorded. This
also contains simple SSRs without a real browser, or from real
browsers controlled by humans instead of automated systems. For
all following analyses, we will now focus exclusively on SSBs, i.e.,
real, automated browsers with JavaScript enabled. As described
in Section 4, discerning SSR tools without JS from real browsers
with JS is straight-forward. On the other hand, discerning bots
from humans with only a single request and without interaction
is much more difficult. In order to do so nevertheless, we use the



time difference between our visit to their website and their visit
to our monitoring server and only consider cases where this time
difference was less than 3 minutes, as such a fast reaction is a
strong indicator for automated behavior. Moreover, as previously
described in Section 4.3, we also extend this time frame if additional
bot indicators are present.

As already shown in Figure 4, focusing on only those requests
that have JavaScript enabled and happened within in the first few
minutes after our visit to their server reduces the total number of
requests significantly. As Table 3 shows, 532 unique requests on 254
different domains were caused by bots running an SSB. Of these,
433 unique requests on 192 domains were labeled as bots because
they arrived within 3 minutes. The remaining 99 requests on an
additional 62 domains were labeled as bots due to a combination
of a time threshold and our additional bot indicators. Moreover,
Table 3 also shows the type of triggers, i.e., whether the visit was
caused by the referer header we sent, a modified URL parameter, or
a form submission. As the table shows, forms were most successful
in attracting SSBs, being responsible for about 65% of all cases.

Table 3: Prevalence of server-side browsers on the left and
their causes on the right-hand side. This is a summary of
Tables 1 and 2, but only with the requests made by SSBs.

# Requests

All requests 3264

Unique requests 532
Unique IPs 440
Unique AS 206

# Domains

All domains 254 (100.0%)

Header 58 (22.8%)
Param 34 (13.4%)
Form 167 (65.7%)

Next, we analyze the characteristics of the affected websites
themselves and found that SSB implementations were significantly
more common on the 10,000 most popular websites with 51 SSBs
compared to the average of 23 SSBs per 10,000 sites in the remaining
90,000 sites.We found 30 of themwithin the top 5,000 and 14 of them
even within the top 1,000 of the most popular websites according to
the Tranco ranking. Moreover, we also investigated what types of
categories these 254 sites belong to, using the WebPulse Site Review
service [5] operated by the security company Symantec. As Table 4
shows, these sites are mostly related to technology and business.

Table 4: Categories of the sites with an SSB.

Category # Sites Category # Sites

Analytics 7 News 14
Business 57 Other 39
Entertainment 3 Shopping 25
Education 21 Technology 69
Government 8 Uncategorized 11

Besides the websites themselves, we also investigated the origin
of these SSB connections. We found that despite our deduplication,
for some websites we received multiple, unique requests from real
browsers even within the first few minutes. On 63 out of the 254
domains, we received requests from IP addresses belonging to two
or more different ASNs. 20 of these even connected from 4 or more
different ASNs and in one extreme case, one website even caused

incoming connections from 22 different ASNs. On the other hand,
we also found some networks that are responsible for a greater
number of incoming connections for different domains. The three
most popular ones were AS8075 with connections triggered on 35
different domains, AS15169 with 34 different domains, and AS14618
and AS16509 each with 18 domains. Closer investigation reveals
that all these ASNs are related to cloud hosting, the first is owned
by Microsoft and used for Azure, the second by Google for their
cloud platform, while the other two are part of Amazon’s AWS.
Therefore, we can not assume a direct relation between these in-
coming requests, as many different companies likely just rely on
the same, third-party hosting provider.

5.4 Investigation of Browser Versions

RQ3: Which browsers are used in these SSB implementations and
at which major version?

The 532 unique requests by bots (with JavaScript enabled and
arriving within our time threshold) were conducted by 157 differ-
ent HTTP user agents (UAs). The supposedly most popular used
browser versions were Chrome 84 in 122 requests, Chrome 85 in 48
requests, and Chrome 88 in 34 requests. However, only 64 requests
had an HTTP UA that additionally clearly indicated that a bot is
visiting us. For example, by either containing a reference to their
service like SpeedCurve [76] in 3 cases or containing a general refer-
ence to an automation framework like Headless Chrome in 36 cases,
PhantomJS in 7 cases, and Lighthouse [37] in 6 cases as the most
popular tools in our data set.

As previously outlined, this UA information in the HTTP header
is easily spoofed and should not be trusted blindly. Thus, we next
compare these supposed values to the UA and platform informa-
tion provided by JavaScript’s navigator object. Looking into our
collected data, we find that 13 unique requests definitely lied to us
based on a mismatch between the HTTP UA and the JavaScript UA.
Moreover, we also find that another striking 124 cases where the
two UAs actually do match with each other but do not match with
the platform information reported in the JavaScript environment.
For example, these have a UA starting with Mozilla/5.0 (Windows
NT 10.0; Win64; x64), but navigator.platform reports Linux x86_64
as their operating system. Table 5 list the most common examples
of UA and platform mismatches.

Table 5: Most frequently faked user agent strings (abbrevi-
ated) and the reported but mismatching platform

# Req. HTTP Header Platform

17 CPU iPhone OS 13_7 [...] Version/13.1.2 Linux x86_64
9 Windows NT 6.1 [...] Chrome/83.0.4103.106 Linux x86_64
9 Windows NT 6.1 [...] Firefox/77.0 Linux x86_64
7 Windows NT 10.0 [...] Chrome/79.0.3945.79 Linux x86_64
4 iPad; CPU OS 11_4 [...] Version/11.0 Linux x86_64

These findings not only confirm that these are indeed bots, but
also that they take some efforts to stay undetected by spoofing both
UA string values. As expected, these bots with UAs claiming to
be running on a Windows PC, an iPhone, or iPad, are actually all
running on a Linux server, the preferred distribution for servers



running automated tasks.With 137 requests with obviously spoofed
information in total, about one quarter of the unique bot requests
lied about their user agents, confirming that this voluntarily pro-
vided information should indeed not be relied upon. Moreover,
these findings should only be seen as a lower bound, as the value
of navigator.platform could obviously be fake, as well.

To analyze their browsers in greater detail, we instead conduct a
feature fingerprinting of all visitors, as described in Section 4.4. This
way, we can determine their UA in an objective manner, without
relying on potentially spoofed user agent strings. For 282 of the
532 unique requests, the version determined by the fingerprinting
indeed did match the version of their HTTP and JavaScript UA
value. In this case, we define match as within one major release as
the fingerprint might not always be distinguishable for browsers
with a fast release cycle. Of the remaining 250 requests where the
user agents did not match our feature fingerprint, 80% claimed to be
older than our fingerprint determined them to be with 201 requests,
while 41 requests came from browsers claiming to be newer than
our fingerprinting determined them to be. The remaining 8 requests
did not send a browser version in their user agent information at all.
Additionally, of those 124 requests that were previously found to be
lying about their OS, in only 12 cases did their provided UA browser
version match the results of our fingerprinting. This means, that
in the remaining 112 cases, their browser version was apparently
manipulated, too.

As described in Section 4.5, we then use the newest version
derived from the three UAs (HTTP, JavaScript, fingerprint) as a
conservative estimate for the actually used browser version. Ta-
ble 6 shows the results, in which Chrome 84 is the most popular
browser version with 150 unique requests. Combined with the other
outdated, but popular versions Chrome 85 and Chrome 86, these
three already make up for over 60% of all unique requests that we
received. Chrome 88, which was the latest stable version of Chrome
at the time of our crawl, only was responsible for 100 (19%) of SSB
requests. In the next section, we will discuss the consequences to
the security of all these servers running outdated SSBs in detail.

Table 6: Number of requests by the five most popular user
agents in SSBs as reported by our three different indicators.
When the indicated versions differ, we use the newest of the
three as the resulting user agent.

Browser Indicator Resulting UA
HTTP Header JavaScript Fingerprint

Chrome 88 34 29 112 100
Chrome 86 2 2 84 84
Chrome 85 48 48 48 95

Edge 85 12 12 0 12
Chrome 84 122 127 204 150

5.5 Vulnerable SSBs in the Wild

RQ4: How many of these SSBs are running outdated browsers vul-
nerable to publicly available exploits?

While there is a certain risk that even a fully up-to-date browser
is exploited [74], in our scenario, we instead focus on outdated

browsers in the wild. In the following, we describe our methodol-
ogy to determine which browsers were vulnerable at the time of
our crawl and how realistic it is to obtain a working exploit for
them. Since 93% of the 532 requests were using Google Chrome
or a Chromium-based browser like Edge, we will only discuss the
security of different versions of this browser in detail.

Google released the latest stable Chrome version 89 for all plat-
forms on March 2, i.e., one day before we started our crawl. This
update contains 8 security fixes with a high severity, however they
only started to roll out the update “over the coming days/weeks” [19].
The previous version 88 had been available for several weeks al-
ready and also contains many important security fixes, some of
which earned a bug bounty of 10,000 dollars or more [18]. However,
at time of writing, the details of these recently patched vulnerabili-
ties in Chrome 88 and 89 had not yet been revealed in Google’s bug
tracker [e.g., 25], therefore we do not know if the bug can be abused
without user interaction. Nevertheless, reverse engineering patched
software to create a working 1-day exploit is, in general, easier
than searching for 0-day vulnerabilities from scratch [64]. As major
browsers are nowadays open-source software, attackers do not even
need to employ binary diffing techniques [e.g., 12, 31, 55] but can
directly look a human-readable diffs including detailed comments
about the changes. As previous research has shown, sometimes
it might even be possible to automatically discover the relevant
security patches among the huge list of changes [86], as well as
automatically create exploits from the identified patches [14].

However, for vulnerabilities patched with the release of Chrome
87 and earlier, even the full details of the bugs including proof
of concept (PoC) exploits and a discussion by Chrome engineers
were already publicly available at the time of our crawl [e.g., 23].
Thus, while Chrome 87 and 88 could likely be exploited by a skilled
attacker reverse-engineering the patches, we nevertheless use a
very conservative estimate here and only consider browser versions
to be vulnerable if publicly disclosed, detailed information about
their vulnerabilities exists. Therefore, we consider version 86 and all
older versions of Chrome to be vulnerable at the time of our crawl.
This also applies to Microsoft Edge, which is based on Chromium
and shares their version naming scheme, and Puppeteer, which
uses Headless Chrome internally.

Table 7: The five most popular SSBs with the number of re-
quests and affected domains in our study. For reference, we
also include their release date and a high/critical CVE with
a PoC exploit for that specific version.

Browser Requests Domains Release CVE PoC

Chrome 88 100 83 01/21 — —
Chrome 86 84 44 10/20 2020-16015 [23]
Chrome 85 95 39 08/20 2020-6575 [21]

Edge 85 12 10 08/20 2020-6575 [21]
Chrome 84 150 68 07/20 2020-6559 [22]

With this information about the security of these different re-
leases in mind, we now come back to the 532 unique requests. Of
these, 405 (76%) were conducted with a browser version vulnerable
to publicly available exploits, resulting in 168 out of the 254 do-
mains with SSBs to be vulnerable. This means, that two out of three



SSB implementations that visit and subsequently execute arbitrary,
attacker-controlled JavaScript code, are running a severely outdated
and vulnerable browser with publicly disclosed PoC exploits. As
shown in Table 7, the most popular browser versions were already
quite dated during our experiments in March 2021 and many of
them were released more than half a year ago. For reference, the
table also includes three CVEs for the most popular browsers ver-
sions we encountered. All of these three CVEs work on all major
platforms, including Linux, are exploitable without user interaction,
and have their details including a PoC exploit publicly available.
When looking at Figure 5, we see that even in the top 10,000 do-
mains, over half of the websites with an SSB are vulnerable. All in
all, this demonstrates that server-side browsers pose a considerable
risk to any organization that makes use of them and is a, so far,
widely overlooked problem.
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Figure 5: Distribution of vulnerable SSB implementations
over Tranco ranks. The most popular sites are on the left.

6 DISCUSSION
In this section, we discuss how various aspects of our methodology
and analysis might have influenced our findings. False positives
in the sense that we misclassify a simple SSR as an SSB are im-
possible, as the former would never be able to generate the exact
request required to register as a client with JavaScript execution.
False positives in the sense that we misclassify a human visitor as
a bot are also quite unlikely since we generate a unique URL that
must be visited within 3 minutes if no additional indicators for an
automated system are present in their request. Therefore, we are
confident that all our findings are indeed valid and represent actual,
vulnerable server-side browsers. However, it is not clear how many
of them are secured by additional means, e.g., make exploitation
difficult because they are running in an isolated network or inside
a restricted virtual environment such as a sandbox. Unfortunately,
without actually abusing the vulnerabilities to explore the under-
lying system in more detail, we can not report on the prevalence
of these countermeasures. On the other hand, there are also three
reasons why we might have missed SSB implementations:

Crawling depth and user interaction. One obvious limitation of
our large-scale study is that we can only visit a limited amount of
sub-pages on each domain and might have missed opportunities
to trigger SSBs simply by not crawling deep enough. Moreover,
SSBs might be hidden behind advanced user interaction, e.g., only

accessible for logged-in users. While recently some efforts have
been made towards authenticated crawling [48], this still represents
a largely unsolved research challenge and is out of scope for this
work.

Server-side filters. An inherent problem of blind attacks is that we
only get notified about successfully triggered implementations. For-
tunately, this is usually only then a problem when trying to launch
an SSRF attack, e.g., when trying to access internal resources. The
important difference here is that we are not trying to circumvent
server-side filters and other countermeasures against attacks, but
rather use their SSB service as intended by simply requesting it to
visit an external website.

Bot detection. As outlined in Section 4, discerning human visitors
from bots within a single request is challenging. To not accidentally
introduce any false positives into our data set, we use a very con-
servative cutoff and ignoring all requests that did not arrive within
3 minutes of our visit to their page. Naturally, this means we likely
missed many slower bots that did visit us too late, e.g., because they
still had a queue of other URLs to visit first.

In summary, this means there are multiple reasons why we prob-
ably reported an underapproximation of the actual extent of the
problem and vulnerable server-side browsers might be actually
even more prevalent than our findings suggest. However, the main
goal of our study was not to precisely measure the exact amount of
SSBs at a specific point in time, as the Internet is a very dynamic
system and these numbers fluctuate daily anyways. Rather, this
work aims to show that server-side browsers are an underestimated
attack surface for the servers running them, as the majority of
implementations that we discovered were vulnerable to publicly
available exploits.

7 RELATEDWORK
In this section, we first discuss the process of automated vulnera-
bility scanning and the concept of blind vulnerabilities in general.
Then, we describe previous work on the topic of server-side re-
quests in detail and discuss how it relates to this work.

7.1 Vulnerability Scanners
Generally speaking, our approach to discover SSR services is re-
lated to black-box vulnerability scanners [e.g., 17, 28, 43, 49]. More
specifically, server-side requests are one instance of a vulnerability
class called blind vulnerabilities. One classic example of this class
are BlindSQL [65] injections, where the attacker might not get a
direct response of the query’s results in text form, but can still infer
their contents based on the application’s response time to different
queries. Another example of this are Blind XML External Entities
(XXE) [75] attacks, in which links in XML sheets are abused to
leak data. To aid the discovery of blind vulnerabilities, PortSwig-
ger added the Collaborator Everywhere plugin [73] to their popular
attack proxy Burp Suite [70].

7.2 Browser Fingerprinting and Bot Detection
Web fingerprinting as a means to recognize repeated visitors, i.e
tracking users without storing a client-side state such as cookies,



has been studied for over two decades [e.g., 7, 29, 30, 53, 54]. How-
ever, in contrast to these previous works, detecting reoccurring visits
by the same browser is not in our scope and we also can not rely
on longer-term behavioral analysis [26, 47] of visitors in order to
differentiate bots from humans. Furthermore, we can not resort
to crawler-specific bot indicators, such as crawler traps [13, 80],
or access log and traffic analysis [78, 85] on a series of requests,
since the SSBs we target do not necessarily behave like crawlers.
Instead, we are interested in identifying automated visitors with
a real browser (RQ2) and their underlying browser version (RQ3)
within a single request.

Thus, more closely related to our focus is research on detecting
browser versions through JavaScript runtime and performance
information [42, 57]. Unfortunately, these techniques suffer from
long time requirements, making it impractical to analyze bots which,
unlike humans, do not tend to leave browser tabs open for a long
time. Moreover, approaches like Red Pills to detect virtualization
are susceptible to processing and network bottlenecks which might
introduce noise [16, 42]. Therefore, to infer the browser version,
we instead leverage a JavaScript engine fingerprinting approach
similar to Mulazzani et al. [62]. However, as previous work has
shown, differentiating between bots and humans based on such
fingerprints is problematic [80]. Yet in contrast to previous works
we have additional knowledge about when to expect a visit and can
identify bots based on this timing information.

7.3 Server-Side Requests
Research specifically on the topic of server-side requests is rare. Sti-
vala and Pellegrino [79] studied how link previews on social media
platforms can be manipulated to create benign-looking previews
for malicious links. While the underlying link preview implemen-
tation makes use of server-side requests to fetch this information,
the security of these implementations was not studied as part of
their paper. In 2017, Orange Tsai [66] presented their findings on
how differences in URL parsers cause filter bypasses leading to
SSRF vulnerabilities in seemingly secure implementations. In 2021,
Jabiyev et al. [46] performed a manual analysis of 61 HackerOne
SSRF vulnerabilities and found that developer awareness for this
vulnerability was still low. The authors propose a generic defense
mechanism that proxies all SSRs through a helper server with no
access to the internal network of that company, preventing the
exfiltration of internal information. However, as all requests are
forwarded through the proxy and still rendered and executed on
the original, internal server, their defense would not protect against
our attacker model.

Most closely related to our work is the 2016 publication titled
“Uses and Abuses of Server-Side Requests” by Pellegrino et al. [69].
For their research, they developed Günther, a scanning tool that
probes server-side backends for SSRF vulnerabilities. While they
discuss the threat of the SSR implementation itself getting exploited,
their attacker model in this case only considers DoS attacks, such as
keeping the SSR provider busy with decompression tasks eventually
leading to memory exhaustion. On the other hand, our work is, to
the best of our knowledge, the first to study the consequences of
running full server-side browsers with JavaScript execution in the
wild. Unlike previous publications, we do not investigate traditional

SSRF vulnerabilities and do also not try to circumvent filters or to
confuse parsers. Instead, we use the SSR service as intended and
instead directly attack those requesting clients that run a fully-
featured, but outdated browser engine. Moreover, we are the first
to systematically investigate this phenomenon on a large-scale
and report on server-side requests conducted by the 100,000 most
popular websites as compared to the previous studies on less than
100 websites.

8 CONCLUSION
In this paper, we studied the phenomenon of running an auto-
mated browser on the server-side. These SSBs represent a unique
attack surface as they execute untrusted code on the server in a full
browser, which is one of the most complex pieces of software of
our times. Consequently, critical security bugs are constantly found
and at a much higher rate than in other server software typically
exposed to the public such as Nginx or Apache. Even worse, if an
library such as Puppteer is included as a dependency in a custom
tool, the underlying browser will not update automatically when
security patches are installed on the server, thus further increasing
the risk.

During our large-scale crawl of the top 100,000 domains, we dis-
covered that we could trigger server-side requests on a significant
fraction of around 6% of the visited domains. Moreover, 16% of these
even conducted their requests with an SSB, i.e., with a real browser
that also executes JavaScript code. We analyzed these browsers
in detail and used a technique based on feature fingerprinting to
determine the version number of these browsers, without relying
on potentially spoofed user agent information. We found that of
the 254 domains where we could confirm that an SSB is used, with
168 of them the majority used severely outdated browsers. Not
only are the details of their vulnerabilities publicly disclosed, but
they are even accompanied by a full proof-of-concept exploit. This
emphasizes how underestimated the risks of running a full browser
on the server-side currently are.
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A FORM FILLING AND DEDUPLICATION
Here, we describe in more detail how our form filling algorithm
works. The algorithm depicted in Figure 6 has two primary goals:
First, we want to reduce the number of outgoing requests to web-
site providers as much as possible. Secondly, to discover SSRs, we
want to insert as many URLs pointing to our monitoring server as
possible, while satisfying potential input validation.

1 for form in page.findAllForms ():
2 formHash = calculateFormHash(form)
3 receiverUrl = getReceiverUrl(form)
4
5 // Skip duplicates
6 if (receiverUrl , formHash) not in submissionCache:
7 // Fill and submit form
8 for field in form.getInputFields ():
9 if allowsUrl(field):
10 field.setValue(generateMonitoringUrl ())
11 else:
12 field.setValue(getDefaultValue(input))
13
14 form.submit ()
15
16 // Prevent duplicates
17 submissionCache.add(( receiverUrl , formHash))

Figure 6: Pseudo code showing our form filling and dedupli-
cation mechanism

For our first goal, we employ a deduplication mechanism that
detects forms with high similarity on multiple subpages of the same
or different websites. To recognize already submitted forms, we
create a hash representation of each form’s outerHTML excluding
already filled values like hidden tokens and collect the URL the
form is posted to (line 2-3). A form is only submitted, if no form
with an identical hash representation has been submitted to the
same receiver URL (line 6). For websites that, for example, em-
ploy a newsletter subscription form in their sidebar, or a comment
functionality on every subpage of a paginated blog, this technique
drastically reduces the number of submissions, since each form is
only filled once.

If the form is new, we decide for each individual input field
whether we can insert a URL (line 8-9). For that purpose, the al-
gorithm determines the semantic data type of each HTML input
element by parsing their type attribute, which directly specifies
the expected content type, e.g. color picker, password or plain text.
Since many websites use text fields for all purposes and conduct
the actual content validation via JavaScript, we also parse the name

attribute of input tags or if missing their closest HTML label. Names
like city, age, or username give information to deduce the required
input type. Naturally, we want to insert as many URLs pointing to
our monitoring server as possible (line 10) to identify as many SSBs
as possible. However, if length restrictions of input fields prohibit
this or when the input type is not a string, we instead try to satisfy
potential input validation as much as possible by inserting fitting
inputs for the deduced type, e.g. by inserting a random age, date, or
a city depending on the type (line 12). After submitting a new form,
a tuple of the receiver URL and the form’s hash representation is
added to the submission cache, to prevent identical forms from
being submitted again (line 14 and 17).
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B TYPES OF TRIGGERS
Here, we present additional information about the three types of
triggers for SSRs, i.e., HTTP headers, URL parameters, and HTML
forms. We find that simply supplying our URL in the RefererHTTP
request header resulted in the most incoming requests as Table 8
shows. Of these, about 4.4% were conducted from a browser with
JavaScript enabled. The table also shows that each of the three types
of triggers has its specific advantage over the others: The Referer

header triggered both most requests in total and the highest number
of different domains. Modifying URL parameters, on the other hand,
resulted in the highest amount of requests with JavaScript enabled.
Submitting forms led to comparatively few requests, yet triggered
a relatively high amount of requests with JavaScript enabled and a
higher percentage of requests from different domains.

Table 8: The different triggers and how each affected the
number of requests with and without JavaScript, as well as
the number of domains.

Trigger # Requests # Requests with JS # Domains

All 168055 7503 (4.5%) 4850 (100.0%)

Header 114833 2373 (2.1%) 3799 (78.3%)
Param 46135 2627 (5.7%) 353 (7.3%)
Form 7087 2503 (35.3%) 794 (16.4%)

Looking at the influence of time on the incoming requests, Fig-
ure 7 shows that changing URL parameters leads to the fastest
responses. Both forms and parameters are quite effective to pro-
voke immediate—and thusmost likely automated—responses within
the first few minutes. The Referer header, on the other hand, does
trigger more requests over a longer time frame. However, these
late requests are then more likely to contain requests from humans,
e.g., people who look at their analytics dashboard and investigate
where their visitors come from.
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linear time axis.
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