
New Kid on the Web: A Study on the
Prevalence of WebAssembly in the Wild

Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck

TU Braunschweig, Germany

Abstract. WebAssembly, or Wasm for short, is a new, low-level language
that allows for near-native execution performance and is supported by all
major browsers as of today. In comparison to JavaScript it offers faster
transmission, parsing, and execution times. Up until now it has, however,
been largely unclear what WebAssembly is used for in the wild. In this
paper, we thus conduct the first large-scale study on the Web. For this,
we examine the prevalence of WebAssembly in the Alexa Top 1 million
websites and find that as many as 1 out of 600 sites execute Wasm
code. Moreover, we perform several secondary analyses, including an
evaluation of code characteristics and the assessment of a Wasm module’s
field of application. Based on this, we find that over 50 % of all sites
using WebAssembly apply it for malicious deeds, such as mining and
obfuscation.

1 Introduction

For a long time, JavaScript has been the only option to create interactive
applications in the browser and especially the development of CPU intensive
applications, such as games, has been held back by the subpar performance
offered by JavaScript. As a remedy, several attempts to bring the performance
benefits of native code to the Web have thus been made: Adobe has heavily
promoted the Flash platform, Microsoft proposed ActiveX, and comparatively
recently, Google introduced its Native Client. However, all these are tied to
a specific platform and/or browser and could not gain acceptance on a large
scale. While Adobe Flash marks an exception here, it suffered from a number of
critical vulnerabilities over the years [26, 40], resulting in dwindling acceptance.
By now all these variants have been deprecated [7, 24] or are scheduled for an
imminent end [2].

In March 2017 the first version of WebAssembly has been published as a
standardized and platform-independent alternative. Only months later, it has
been implemented in all four major browser engines [22] and strongly gained
traction ever since, as the low-level bytecode language allows for significantly faster
transmission, parsing, and execution in comparison to JavaScript [8]. Naturally,
also adversaries have quickly taken up the trend and have used WebAssembly to
mine memory-bound cryptocurrencies, such as Monero. Consequently, hijacking
websites to covertly perform intensive computations has become a worthwhile
alternative to dedicated mining rigs. This new form of parasitic computing,

widely called cryptojacking or drive-by mining, has gained momentum on the
Web during the all-time high of cryptocurrencies at the end of 2017. Research
has recently investigated this phenomenon in particular and has proposed several
countermeasures [14, 19].

Apart from this very specific occurrence, however, it remains unclear what
WebAssembly is widely used for and whether malware based on this new tech-
nology exists next to cryptojacking miners. In this paper, we thus conduct the
first comprehensive and systematic investigation in this regard. To this end, we
instrumented a browser to collect all WebAssembly code and use a profiler to
gather information about the CPU usage of the visited sites. This way, we cannot
only detect the mere presence of WebAssembly, but also measure the extent of
usage compared to the time spent on executing JavaScript code. In particular,
we find that 1 out of 600 sites among the Alexa 1 million use WebAssembly and
one-third of these even spend more than 75 % of the time executing WebAssembly
in comparison to time spent in JavaScript code.

Interestingly, we also observe a high amount of code shared between modules.
This is in line with previous research on cryptominers and seems little surprising
from this point of view. However, we have additionally attributed each collected
sample to different categories in a manual effort and thus, identify several distinct
use cases that have found widespread adoption so far. Mining is only one of
them and is applicable for 32 % of all unique samples. The second category with
potential malicious intent is the broad field of Obfuscation, which amounts for
6 % of the unique samples. This category consists of 10 different samples that
obfuscate program code using WebAssembly, such that we conclude that this
is only the tip of the iceberg of what we will see in the future. The remaining
64 % is spread over games, custom code, libraries, and environment fingerprinting
techniques. In combination, the two malicious categories, however, account for
more than half of the web sites that make use of WebAssembly, due to the reuse
of the same mining modules on many different sites.

Based on these findings, we further discuss security implications resulting
from the introduction of this low-level language into the browser. In summary,
our paper makes the following contributions:
– Large-scale Analysis. Based on the Alexa Top 1 million websites ranking,

we present the first large-scale study on the usage of WebAssembly in the wild.

– Categorization. We provide a mapping from the collected samples to con-
crete use cases and investigate how many of these have malicious intentions.

– Security Assessment. We discuss the expected security implications en-
abled through the introduction of another first-class language into the browser.
The remainder of the paper is structured as follows: In Section 2 we discuss

fundamentals and peculiarities of WebAssembly as a platform, before we conduct
our study on its prevalence in the wild in Section 3. In Section 4 we then
inspect the individual applications of WebAssembly. Based on this, we discuss
implications for the security on the Web as well as related work in Sections 5 and 6,
respectively. Section 7 concludes the paper.

2

2 WebAssembly

Often, JavaScript is not sufficient to create efficient implementations, as it requires
a costly interpretation within the browser. As a remedy, the WebAssembly
standard proposes a low-level bytecode language, that is a portable target for the
compilation of high-level languages, such as C/C++ and Rust [30]. The resulting
WebAssembly code, or Wasm code for short, is then executed on a stack-based
virtual machine. Due to its low-level nature, the code can execute at near-native
speed, but still runs in a memory-safe, sandboxed environment in the browser
and is subject to security mechanisms like the same-origin policy [37]. Moreover,
WebAssembly significantly improves on loading time over JavaScript code, due
to its space-efficient binary representation [13].

Similar in motivation, but orthogonal to WebAssembly, asm.js was introduced
in 2013 and implements a subset of JavaScript that is specifically designed
to enable fast execution of code on the Web [4]. Some browsers then started
to add optimizations specifically for asm.js resulting in further performance
gains. However, JavaScript and asm.js are both missing important features for
performance critical applications like 64-bit integers operations, threads, and
shared memory. Furthermore, while asm.js features comparable fast execution,
its parsing performance still is inferior compared to WebAssembly [42].

WebAssembly addresses these shortcomings and significantly improves on the
state of the art of efficient computation on the Web. Hence, it quickly gained
popularity due to well-advanced dissemination of its implementation. As of the
time of writing, WebAssembly has global support of approximately 80 %1 of
all users (including mobile devices). In this section, we give an overview of the
WebAssembly format and the corresponding JavaScript API that is used to
instantiate and interact with Wasm modules.

2.1 Module structure

WebAssembly is structured in modules, which are self-contained files that may
be distributed, instantiated, and executed individually. Each module starts
with the magic bytes 0x6d736100, a null byte and the string asm, followed by
the version number, which currently is fixed to 0x01. A WebAssembly module
consists of individual sections of 11 different types, such as code, data, and import.
Subsequently, we briefly describe the four most relevant section types.

Code Section This usually is the largest section as it encapsulates all function
bodies of the WebAssembly module. One example of a function in this code
section can be found in Table 1. This example comprises only basic functionality,
like control flow statements, addition, and multiplication. Of course, there also
exist a number of instructions with more complex mechanics, such as popcnt,
which counts the number of bits set in a number, or sqrt, which calculates the
square root of a floating-point value [37]. Note that these instructions do not
1 Statistics from http://caniuse.com in January 2019

3

http://caniuse.com

involve any registers, but operate on the stack only, which is based in the design
of the underlying virtual machine.

Table 1. A simple C function on the left and the corresponding WebAssembly bytecode
along with its textual representation, the Wat format, on the right-hand side [37].

C program code Binary Text representation

20 00 get_local 0
42 00 i64.const 0

51 i64.eq
int factorial(int n) { 04 7e if i64

if (n == 0) 42 01 i64.const 1
return 1 05 else

else 20 00 get_local 1
return n * factorial(n-1) 20 00 get_local 1

} 42 01 i64.const 1
7d i64.sub

10 00 call 0
7e i64.mul
0b end

Data Section The optional data section is used to initialize memory, similar to
the .data section of x86 executables. Amongst others, this section contains all
strings used throughout the module. Figure 1 shows the definition of such a data
segment in Wat format. In this example, four bytes are saved at the memory
offset 8, which results in the number 42 if read as an unsigned integer. The
memory index in line 2 references an instance of linear memory and is reserved
for future use, as currently only one memory definition is supported.

1 (data_segment
2 0 // memory index
3 (init_expr (i32. const 8)) // byte offset
4 (data 0x2a 0x0 0x0 0x0) // the data itself
5)

Fig. 1. Initializing memory with the number 42.

Import and Export These sections define the imports and exports of a Web-
Assembly module. The import section consists of a sequence of imports, which
are made available to the module upon instantiation, that is, any listed function
can then be used via the call opcode. For importing a function the module name,

4

function name, and its type signature needs to be specified. It is then up to the
host environment, for instance the browser, to resolve these dependencies and
check that the function has the requested signature [37]. The export section, in
turn, defines which parts of the module (functions or memory) are made available
to the environment and other modules. Everything declared in this section can
also be accessed via JavaScript as well.

2.2 JavaScript API

WebAssembly is intended to complement JavaScript, rather than to replace it.
Consequently, it comes with a comprehensive JavaScript API, that allows sharing
functionality between both worlds and instantiating WebAssembly modules with
only a few lines of JavaScript code. To speed up the initialization of a new module,
the Wasm binary format is designed such that a module can be partially compiled
while the download of the module itself is still in progress. To this end, the API
provides the asynchronous instantiateStreaming function, to complement the
older synchronous instantiate function. Of course, WebAssembly modules may
also be instantiated from data, embedded in JavaScript code—for instance, as
raw bytes in an Uint8Array.

1 const obj = {
2 imports : {
3 imported_func : function (arg) { console .log(arg); }
4 }
5 };
6 const wasm = await WebAssembly . instantiateStreaming (
7 fetch (’example .wasm ’), obj
8);
9 let result = wasm. instance . exports . factorial (13);

Fig. 2. Instantiating a WebAssembly module and calling an exported function.

One short example on how to instantiate a Wasm module and interact with
it in only a few lines of code can be seen in Figure 2. In this example, the first
parameter of the instantiateStreaming call in line 7 uses the fetch function to
load a module over the network. The second parameter is an object specifying the
imports for the module and, in this example, exposes the console.log function to
the WebAssembly environment. This is necessary to grant the Wasm code access
to functions from the JavaScript domain. The same restrictions, for instance,
also apply to access and modifications to the DOM. In line 9, the exported
function factorial is invoked to pass execution to the WebAssembly module.
The corresponding Wasm code is the called, executed, and the value returned
to the JavaScript environment. Alternatively, the factorial function could be
changed to make use of the imported console.log functionality to directly print
the value from within the Wasm module.

5

3 WebAssembly in the Wild

In order to comprehensively assess the WebAssembly landscape, we first need
to obtain a representative data set on its current usage. In the following, we
describe our crawling setup to collect Wasm samples in the wild. We then report
on its prevalence in general, analyze the extent of usage in more detail, and also
investigate the similarity between our collected samples.

3.1 Data collection

We conduct our study on the Alexa list of the Top 1 Million most popular sites2.
Throughout this paper, a site refers to one entry in the Alexa list and consists
of the pages that share the same origin with it. We conducted a preliminary
study that revealed that a significant fraction of the Wasm code is not loaded
when only visiting the front page of each domain. Therefore, and in line with
previous research [19], we also randomly select three links from the front page
to subpages within that site and visit these, too. This way, we could identify
about 25% more sites that use WebAssembly and collected about 40% more
unique samples compared to a crawl of the same sites without any subpages.
While visiting three links still only approximates the actual usage in the wild,
this setup represents a tradeoff between completeness and feasibility of the study.
On each page, we wait until the browser fires the load event or a maximum of 30
seconds pass. On top of that, we always wait an additional 5 seconds on each
page after the load event, to allow for dynamically loaded content in general and
the dynamic loading of larger Wasm files in particular.

3.2 Implementation

To collect the Wasm modules, we visit all these pages with our crawler written
in NodeJS. Under the hood, the crawler uses Google Chrome v73.0.3679 as its
browser, which we instrument via the DevTools Protocol [6]. Previous research
mentions the undocumented –dump-wasm-module flag for Chrome’s Wasm compiler
as a simple option to save all executed Wasm modules [19]. However, this flag
seems to be no longer functional in recent versions of Chrome. Another option to
collect all Wasm code is hooking the DevTools Protocol’s Debugger.scriptParsed
event and filtering for the wasm:// scheme. Though this event only gives us the
Wat for each parsed function and not the whole Wasm module in its original
form and hence important parts of the module, like the memory section, are not
available.

For comprehensiveness, we instead transparently hook the creation of all
JavaScript functions which can compile or instantiate Wasm modules. Figure 3
demonstrates how we hooked instantiate and the corresponding async version
called instantiateStreaming. For compile and its async counterpart, the process
is identical. For the WebAssembly.Module constructor, on the other hand, we use
the built-in Proxy object to create a trap for the new operator [see 23].
2 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip (from 21. December 2018)

6

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

1 let original = WebAssembly . instantiate ;
2 WebAssembly . instantiate = function (bufferSource) {
3 // Log bufferSource to backend here
4 return original .call(WebAssembly , ... arguments);
5 };
6 WebAssembly . instantiateStreaming = async function (source , obj) {
7 let response = await source ;
8 let body = await response . arrayBuffer ();
9 return WebAssembly . instantiate (body , obj);

10 };

Fig. 3. Modifying the instantiation of WebAssembly to collect the raw Wasm bytes.

3.3 Prevalence

With this setup, we visited the Alexa Top 1 million over a time span of 4 days. Of
the initial 1 million, 52,296 front pages could not be successfully visited: About
63% of these failed because the DNS did not resolve and another 27% did not
load within our timeout of 30 seconds. The rest failed due to various reasons,
such as too many redirects or SSL errors. In the following, we report on the usage
of WebAssembly on the remaining 947,704 sites in an aggregated fashion, i.e. if
we find the same Wasm binary on different subpages belonging to the same site,
we only report it once. In total, we visited 3,465,320 pages, as some front pages
had less than three internal links.

Overall, we discovered 1,639 sites loading 1950 Wasm modules, of which 150
are unique samples. This means that some Wasm modules are popular enough
to be found on many different sites, in one case the exact same module was
present on 346 different sites. On the other hand, 87 samples are completely
unique and were found only on one site, which indicates that many modules
are a custom development for one website. On some pages, we found up to 10
different Wasm modules, with an average of 1.22 modules per page on sites that
use WebAssembly at least once. Moreover, Figure 4 shows that sites with a lower
Alexa rank3 also tend to use WebAssembly more often.

Regarding the initiator of the modules, on 1118 sites the module was in-
stantiated by a first-party script, while on 795 sites the module came from a
third-party script or iframe with another origin. In the second case, the site’s
administrator might not even be aware that WebAssembly is used on his/her site.
Note that there is some overlap, as some sites used multiple modules, especially
since we also crawled several subpages for each site. Of these, on 1349 sites, the
majority of instantiations happened inside a dedicated WebWorker. Code in such
a WebWorker executes in a separate thread and does not block interaction with
the page during intensive computations. Any JavaScript code that runs in a
worker is likely computationally intensive and thus an ideal target to implement
in WebAssembly instead.

3 A lower rank means a more popular site, e.g. google.com has rank 1

7

100K 300K 500K 700K 900K
Alexa rank

0

50

100

150

200

250

sit

es
 u

sin
g

W
eb

As
se

m
bl

y

Fig. 4. Distribution of Alexa sites using WebAssembly in bins of 100,000 sites.

3.4 Extent of usage

The mere instantiation of a Wasm module, however, does not mean that a site is
actively using the module’s code. Some sites just test if the browser does support
WebAssembly, while other sites are actually relying on the functionality the
module exposes. A first indicator for this is the size of the module: the smallest
was only 8 bytes, while the largest was 25.3 MB with a median value of 99.7
KB per module, as can be seen in Figure 5. On the other hand, the JavaScript
code on the sites using Wasm had a median size of 2.79 MB. This shows that
currently the amount of Wasm code is often only a fraction of the total code
base on a site. Nevertheless, this should be seen only as a rough estimate as the
comparison between a text-based and a binary format is inherently unfair.

101 102 103 104 105 106 107

Size of WebAssembly modules in bytes

Fig. 5. Distribution of the size of WebAssembly modules. The box represents the middle
50% of the data, with the line in the box at the median. Outliers are shown as red dots.

To conduct a more in-depth analysis of how many sites make any significant
use of the loaded Wasm modules, we use Chrome’s integrated performance profiler.
This profiler pauses the execution at a regular interval and samples the call stack,
which enables us to estimate how much time is spent executing JavaScript code
and how much time is spent in Wasm code. For this analysis, we revisited all
pages on which we found a Wasm module with the profiler active both during
the page load and for an additional 5 seconds after the page had finished loading.

With this approach, we find that 1121 sites spent more time on executing
JavaScript code, while 506 spent more time in Wasm code. For the remaining

8

0% 20% 40% 60% 80% 100%
WebAssembly usage

0

200

400

600

800

1000

N
um

be
r o

f s
ite

s

Fig. 6. Distribution of the execution time spent in Wasm code. The sites are heavily
biased towards either extreme, with no middle ground.

12 sites we have no profiling data, which was caused by the fact that we did
the profiling analysis in a second crawl shortly afterward and some sites became
unavailable in the meantime. As Figure 6 shows, there is a distinct contrast
between the majority of sites that use WebAssembly almost not at all and some
other sites that nearly exclusively spending time in the Wasm code. For this
analysis, we measure the execution time of Wasm and JavaScript code and
exclude all other factors like idle times when waiting for network responses.
For example, a site with a Wasm usage of 90% thus spent the remaining 10%
executing JavaScript code.

3.5 Code similarity

Finally, we analyze the diversity of the WebAssembly code that we have gathered.
While we observe a rather large amount of identical code samples (only 10 %
are unique instances), determining the similarity of WebAssembly code requires
a fuzzy analysis, as minor perturbations of the files obstruct the application of
exact matching.

We thus employ techniques from information retrieval that can cope with noisy
data. In particular, we conduct an n-gram analysis, where the bytecode is first
partitioned into byte sequences of length n and then mapped to a vector space
by counting the occurrences of n-grams [see 32]. This vectorial representation
enables us to compute the cosine similarity between all samples and generate the
similarity matrices shown in Figure 7a. The columns and rows of the matrices
are arranged using hierarchical clustering, such that larger groups of similar code
samples become visible.

In total, we identify 11 clusters of similar code. Particularly eye-catching
are the two largest groups at the top, left corner of the figure. First, with 831
and 456 samples they comprise more than half of the overall WebAssembly code
which we have collected. Second, the distinction between both is not as clear as to
other clusters in our dataset. This indicates a certain similarity wrt. to the used

9

0 500 1000 1500 2000
Samples

0

500

1000

1500

2000

Sa
m

pl
es

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cluster distances

Cluster # samples

1 831
2 456
3 204
4 186
5 107

6–11 166

Total 1,950

(b) Cluster sizes

Fig. 7. Similarity analysis of WebAssembly code from the Alexa 1 million ranking.

instructions. Likely, samples from both groups make use of heavy computations
such as rendering graphics or computing large numbers. Clusters 2 and 3 are
smaller (~200 samples) but more clearly separated from the remaining samples.
For cluster 5, note the (dark gray) horizontal and vertical bars. These indicated
that this group again shares similarity with the first two clusters. Presumably,
these samples represent an alternative implementation of the same task or the
same implementation compiled with different tools, leading to minor differences
on the byte level without affecting the code’s functionality. The remaining clusters
are rather small and expose only little structure.

In the following section, we further investigate the use cases and the origin of
the samples represented in these clusters and thus attempt to shed light on the
overall use of WebAssembly in the wild.

4 Applications of WebAssembly

In the previous section, our dynamic analysis has shown significant different
usage, with some pages spending more time in Wasm code than in JS, while
many others barely used the Wasm module at all. Additionally, our clustering
has shown that many modules are part of a larger group of similar modules.
These analyses both indicate that there a few very different use cases for which
WebAssembly is used today.

To investigate this further, we manually analyzed all 150 collected Wasm
modules. We first inspected the modules themselves and looked at function names
and embedded strings to get an idea about the likely purpose of the module. In
order to confirm our assumptions, we visited one or more websites that used the
module and investigated where the Wasm module is loaded and how it interacts
with the site. Thereby, we arrived at the following six categories: Custom, Game,
Library, Mining, Obfuscation, and Test. The first three are of benign nature,

10

Table 2. The prevalence of each use case in the Alexa Top 1 Mio. As some sites had
modules from multiple categories, the sum exceeds 100%.

Category # of unique samples # of websites Malicious

Custom 17 (11.3 %) 14 (0.9 %)
Game 44 (29.3 %) 58 (3.5 %)
Library 25 (16.7 %) 636 (38.8 %)
Mining 48 (32.0 %) 913 (55.7 %) 7

Obfuscation 10 (6.7 %) 4 (0.2 %) 7

Test 2 (1.3 %) 244 (14.9 %)
Unknown 4 (2.7 %) 5 (0.3 %)

Total 150 (100.0 %) 1,639 (100.0 %)

but modules of the categories Mining and Obfuscation use WebAssembly with
malicious intentions. We consider testing for WebAssembily support in general
as neither benign nor malicious itself and thus see the category Test as neutral.

4.1 Results

The largest observed category implements a cryptocurrency miner in Web-
Assembly, for which we found 48 unique samples on 913 sites in the Alexa
Top 1 Million. With 44 samples we found almost as much different games using
Wasm, but in contrast to the miners, these games are spread over only 58 sites
and thus often only appeared once. For 4 modules we could not determine their
purpose and labeled them as Unknown. Of these, 2 did not contain a valid Wasm
module, but the sites attempted to load it as such regardless. Table 2 summarizes
our results and shows that with 56%, the majority of all WebAssembly usage in
the Alexa Top 1 Million is for malicious purposes. The remainder of this section
first shortly describes the benign and neutral use cases and then proceeds to look
into the malicious usages of WebAssembly in more detail.

4.2 Benign: Custom, Games and Libraries

Modules in the Custom category appeared to be a one-of-a-kind experiment, e.g.
one was a fancy background animation and another collected module contained
an attempt to write a site mostly in C# with cross-compilation to Wasm. Games
are arguably also of custom nature and often only found on one specific site.
However, they are a very specific subset of custom code, of more professional
nature and often also have a clear business model (e.g. in-game purchases or
advertisements). Library, on the other hand, describes Wasm modules that
are part of publicly available JavaScript libraries. For example, the library
Hyphenopoly4 uses WebAssembly under the hood to speed up its algorithm for
word hyphenation. In this case, the use of WebAssembly might not be the result
of an active decision by the site’s developer.
4 https://github.com/mnater/Hyphenopoly/issues/13

11

4.3 Neutral: Test

As described in Section 3.3, some sites loaded WebAssembly modules with a size
of only a few bytes. Manual investigation showed that the only purpose of these
modules is to test whether WebAssembly is supported by the visitor’s browser.
We discovered such test modules on 244 sites. Of these, 231 sites then proceeded
to load another module after this test, while, on the other hand, 13 sites only
made the test without executing any further Wasm code afterward. The latter
might, for example, use this in an attempt to fingerprint their visitors. However,
due to the lack of information we gain from such a small module, we see these as
neither benign nor malicious.

4.4 Malicious: Mining

The category Mining includes all modules that are used to mine for cryptocur-
rencies in the browser. Mining is a basic building block of cryptocurrencies, such
as Bitcoin or Ether, and refers to the process of solving computational puzzles
to validate transactions and generating new coins of the currency [25]. Newer,
memory-bound currencies build on computational puzzles that are memory in-
tensive and thereby reduce the advantage of specific hardware over commodity
processors [33, 36]. Consequently, the resulting currencies can be profitably mined
on regular computer systems and thus open the door for the widespread ap-
plication of cryptocurrency mining. Unfortunately, this development has also
attracted miscreants who have discovered cryptocurrencies as a new means to
generate profit. By tricking users into unnoticeably running a miner on their
computers, they can utilize the available resources for generating revenue—a
strategy denoted as cryptojacking or drive-by mining [19].

A novel realization of this strategy is injecting mining code into a website,
such that the browser of the victim mines during the website’s visit. First variants
of these attacks have emerged with the availability of the CoinHive miner in
September 2017 [1, 20]. This software cleverly combines recent web technologies
to implement a miner that efficiently operates on all major browsers. In particular,
WebAssembly is a perfect match for implementing mining software, as it enables
compiling cryptographic primitives, such as specific hash functions, from a high-
level programming language to low-level code for a browser. Since CoinHive’s
launch, several similar variants that all implement the underlying CryptoNote
protocol have been developed, including sites like JSECoin and CryptoLoot.

Our analyses of the miner samples show that they exhibit several unique
traits when compared to modules from all other categories. For one, their size is
rather uniform, ranging from 23.4 KB to 119.1 KB with a standard deviation of
only 16.4 KB. In contrast, for all the other categories combined we observed a
standard deviation of 7.74 MB. Moreover, the code of the collected WebAssembly
miners is also rather similar. Coming back to the code similarity analysis, the
clusters number 3 and 6 in Figure 7a consist entirely out of miners. Except for 3
outliers in the very small cluster 7, these two clusters also contain all the mining

12

samples from our dataset. Moreover, we also found that on 26 % of all sites with
a miner, a significant fraction of these was instantiated by third-party code.

As expected, sites with Wasm miners also use these modules much more
extensively than modules from any other category. Coming back to our measure-
ment of the JS and Wasm CPU usage with the profiler described in Section 3.4,
we can now (after the manual categorization of the samples) analyze how many
of the sites with a high amount of Wasm usage are running a miner. As shown
in Figure 8, of the 506 sites with over 50% WebAssebmly usage with 497 sites
the vast majority of these is, indeed, mining for cryptocurrencies. Regarding
the 9 sites with high CPU usage from Wasm code not related to web-based
mining, we found that 8 were caused by libraries for fast 64 bit operations or
video streaming, and 1 by a game. On the other hand, this means that 416 sites
do not mine for cryptocurrencies, despite the presence of a mining module. Our
manual investigation has shown several reasons why a miner might be present
but not active: (1) A mining script is included, but the miner is not started or
was disabled and the script not removed. (2) The miner only starts once the user
interacts with the web page or after a certain delay. (3) The miner is broken,
either because of invalid modifications or because the remote API has changed.
(4) The WebSocket backend is not responding, which prevents the miner from
running.

0% 20% 40% 60% 80% 100%
WebAssembly usage

10
0

10
1

10
2

10
3

N
um

be
r o

f s
ite

s

Miners
Others

Fig. 8. Distribution of the execution time spent in Wasm code by category. Note that
this is based on the same data as Figure 6, but this time with the y-axis is on a log
scale for visibility of the smaller values. As a result of the log scale, the inactive miners
on the very left appear smaller than they actually are.

4.5 Malicious: Obfuscation

While cryptojacking certainly did get a lot of attention from the academic
community in 2018 [e.g. 14, 19, 29, 31], this is not the only type of malicious
WebAssembly code already in use in the wild. Rather than using WebAssembly

13

for its performance improvements, some actors abuse its novelty instead. Figure 9
shows the HTML and JavaScript code embedded into the memory section of a
Wasm module we found. Through this obfuscation of hiding the JavaScript code
in a Wasm module, malicious actors likely can prevent detection by analysis tools
that only support JavaScript and do not understand the Wasm format. The code
tries to create a pop-under, which is an advertisement that spawns a new window
behind the current one and is basically the opposite of a pop-up. The idea is that
this way, the window stays open for a very long time in the background until the
user minimizes or closes the active browser window in the foreground. Another
8 modules also contained code related to popups and tracking in the memory
section, likely in an attempt to circumvent adblockers.

The last of the 10 modules, which employed obfuscations via WebAssembly,
implemented a simple XOR decryption (and nothing else). This could, for example,
be used to decrypt the rest of a malicious payload. However, in this case, the
module seemed to not be used at all after the initialization. Nevertheless, we
see these first, simple examples as evidence that malicious actors are already
slowly moving towards WebAssembly for their misdeeds and we expect more
sophisticated malware incorporating Wasm code to emerge in the future.

1 <script >
2 var popunder = { expire : 12,
3 url: ’// hook -ups -here.com /?u=8 l3pd0x &o=4 gwkpzn &t=all ’};
4 </script >
5 <script src=’// hook -ups -here.com/js/ popunder .js ’ ></script >

Fig. 9. Code to create a pop-under advertisement, which was found in the memory
section of a WebAssembly module.

5 The future of malicious WebAssembly

In the previous section, we showed that WebAssembly is actively used for malicious
purposes. However, cryptocurrency miners would also have been possible without
the introduction of WebAssembly, the mining would just have been less efficient
and thus also less profitable. In fact, the popular CoinHive mining script contains
a fallback to asm.js, in case WebAssembly is not supported by the visitor’s
browser [9].

On the other hand, WebAssembly does open the door for completely new
obfuscation techniques not possible before and also enables the circumvention of
existing analysis systems and defensive mechanisms. For example, established
approaches like Zozzle [11], Rozzle [18], JStill [41], JForce [17], and Dachshund [21]
all predate the introduction of WebAssembly to the browser. As these systems rely
on parsing and inspecting JavaScript code to detect attacks, they cannot defend
against new attacks implemented in Wasm code. Moreover, many are specifically

14

designed to work with the peculiarities of JavaScript and the fundamental
differences between the two languages would require a non-trivial amount of
work to adapt these approaches to the stack-based virtual machine running the
WebAssembly.

As attackers tend to take the path of least resistance, WebAssembly looks like
a promising way to write stealthy malware for the browser in the years to come.
The phases from the first, simple attempts to hide code towards sophisticated
obfuscation via WebAssembly could roughly progress in the following way:

Embedded JavaScript code. As described in Section 4.5, one simple approach
to hide JavaScript during the transmission is to embed it into a WebAssembly
module. However, this is likely only effective again Adblockers and other filters
that employ rules on the network level.

Loader in Wasm. To take it one step further, a small module with one Web-
Assembly function could unpack and decrypt the actual JavaScript payload.
This approach effectively defeats all static analysis tools that only understand
JavaScript code without much effort from the malware author. However, as with
the previous approach, the code then later needs to be added to the DOM or
invoked via eval. Therefore, dynamic analysis would not be affected.

Full implementation in Wasm. In contrast to the previous to approaches, a full
implementation of the exploit in WebAssembly would defeat systems for the
automated static as well as dynamic analysis of JavaScript code. Furthermore,
such modules are also harder to manually analyze than JavaScript code, due to
the low-level nature of WebAssembly code.

Fully intertwined code. Even more complicated to analyze and detect would
be malware that is neither exclusively JavaScript nor WebAssembly at its core,
but both at the same time. With constant switches between the two domains,
even within functions, the malware would never exist as a whole on either side.
Therefore, any analysis system would require support for both languages and
needs to be able to keep track of all possible switches and interactions between
the two domains.

6 Related work

To the best of our knowledge, at time of writing there have been no peer-reviewed
publications on the security aspects of WebAssembly. There are, however, already
some tools in the work by academics, e.g., a dynamic analysis framework for
WebAssembly called Wasabi [39]. In the following, we discuss related work on
malicious JavaScript in general and the detection of cryptocurrency miners in
particular.

15

6.1 Malicious JavaScript

The analysis of JavaScript is complicated by its dynamic nature and because
malicious samples are also often obfuscated. Therefore, there have been many
academic works over the years trying to tackle this problem. To detect drive-by
attacks, Cova et al. [10] created JSAND, which uses anomaly detection combined
with an emulated execution to generate detection signatures. With a similar
goal, Cujo by Rieck et al. [27] uses static and dynamic code features to learn
malicious patterns, detects them on-the-fly via a web proxy and consecutively
can prevent their execution. Zozzle, on the other hand, is a malware detector
by Curtsinger et al. [11], which runs inside the browser and uses mostly static
features from the AST together with a Bayes classifier. Xu et al. [41] also use
mostly static analysis, but with the goal to actually revert previously applied
obfuscation steps. In 2016, Stock et al. [34] presented their work on creating sig-
natures for JavaScript drive-by exploit kits. They found that while the obfuscated
code changes frequently, the underlying unpacked code evolves much more slowly,
which aids the detection process.

Some solutions were also proposed to deal with evasive malware, which is not
only obfuscated but actively tries to avoid detection. Kolbitsch et al. [18] created
Rozzle, an approach to trigger environment-specific malware via JavaScript multi-
execution. This way, they can observe malicious code paths without actually
satisfying checks for browser or plugin versions. Improving on this, Kim et al. [17]
presented their work on forced execution to reveal malicious behavior, with a
focus on preventing crashes. To detect evolving malicious JavaScript samples,
Kapravelos et al. [16] designed Revolver, which utilizes similarities in samples
compared to older versions of the same malware. Their rationale is that malware
authors react to detections by anti-virus software and iteratively mutate their
code to regain their stealthiness.

6.2 Cryptocurrency Mining

Web-based cryptojacking is a novel attack strategy that received the attention of
the research community in 2018, with several papers on the topic in the same year.
The study by Eskandari et al. [12] was the first to provide a peek at the problem.
However, the study is limited to vanilla CoinHive miners, and the underlying
methodology is unsuited to detect alternative or obfuscated mining scripts. The
work by Hong et al. [14] uses a set of fixed function names and a stack-based
profiler to detect busy functions. In contrast, Konoth et al. [19] propose a novel
detection based on the identification of cryptographic primitives inside the Wasm
code. Similarly, Wang et al. [38] detect miners by observing bytecode instruction
counts, while Rodriguez and Posegga [29], on the other hand, use API monitors
and machine learning.

Unauthorized mining of cryptocurrencies, however, is not limited to web
scenarios. For example, Huang et al. [15] present a study on malware families
and botnets that use Bitcoin mining on compromised computers. Similarly,

16

Ali et al. [3] investigate botnets that mine alternative currencies, such as Do-
gecoin, due to the rising difficulty of profitably generating Bitcoins. To detect
illegitimate mining activities, either through compromised machines or malicious
users, Tahir et al. [35] propose MineGuard, a hypervisor-based tool that identifies
mining operations through CPU and GPU monitoring.

From a more general point of view, cryptocurrency mining is a form of
parasitic computing, a type of attack first proposed by Barabási et al. [5]. As
an example of this attack, the authors present a sophisticated scheme that
tricks network nodes into solving computational problems by engaging them
in standard communication. Moreover, Rodriguez and Posegga [28] present an
alternative method for abusing web technology that enables building a rogue
storage network. Unlike cryptojacking, these attack scenarios are mainly of
theoretical nature, and the authors do not provide evidence of any occurrence in
the wild.

7 Conclusion

With this study, we provide the first comprehensive view on the use of Web-
Assembly in the wild. Although we are investigating a rather novel technology,
our empirical investigation shows that an increasing number of websites already
deploy functionality in the form of Wasm modules. In particular, we find that
1 out of 600 websites in the Alexa 1 million ranking use WebAssembly, one-third
of which even spend significantly more time on it than executing JavaScript.
The remaining two-thirds, in turn, perform very few computations only. We
credit this imbalance to the current prevalence of web-based cryptomining using
WebAssembly, which drains a considerable amount of energy every day.

Moreover, by introducing an entire new execution environment, WebAssembly
also opens the door for novel obfuscation strategies. The existence of multiple
languages, that interact with each other, renders effective malware analysis
extremely difficult. This holds true for static, dynamic, as well as manual analysis
likewise. While these obfuscation strategies can be carried out to an extreme by
heavily intertwining WebAssembly with JavaScript code, in our recordings we
have only seen rather moderate ways of obfuscating program code thus far.

This, however, suggests that we are currently only seeing the tip of the
iceberg of a new generation of malware obfuscations on the Web. In consequence,
incorporating the analysis of WebAssembly code hence is going to be of essence
for effective future defense mechanisms.

Acknowledgments

The authors gratefully acknowledge funding from the German Federal Ministry of
Education and Research (BMBF) under the project VAMOS (FKZ 16KIS0534)
and FIDI (FKZ 16KIS0786K), and funding from the state of Lower Saxony under
the project Mobilise.

17

Bibliography

[1] AdGuard Research. Cryptocurrency mining affects over 500 million people.
And they have no idea it is happening. Website https://adguard.com/en/
blog/crypto-mining-fever/, Oct. 2017.

[2] Adobe Corporate Communications. Flash & the future of interactive content.
https://theblog.adobe.com/adobe-flash-update/, 2017.

[3] S. T. Ali, D. Clarke, and P. McCorry. Bitcoin: Perils of an unregulated
global p2p currency. In Security Protocols XXIII, pages 283–293. Springer,
2015.

[4] ASM.js. Frequently asked questions. Website http://asmjs.org/faq.html,
Feb. 2019.

[5] A.-L. Barabási, V. W. Freeh, H. Jeong, and J. B. Brockman. Parasitic
computing. Nature, 412:894–897, 2001.

[6] ChromeDevTools. Chrome DevTools Protocol Viewer. Website https:
//chromedevtools.github.io/devtools-protocol/, May 2018.

[7] Chromium Blog. Goodbye pnacl, hello webassembly! Website https://
blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html,
May 2017.

[8] L. Clark. What makes webassembly fast? Website https:
//hacks.mozilla.org/2017/02/what-makes-webassembly-fast/, Feb.
2017.

[9] CoinHive Documentation. JavaScript Miner. Website https://
coinhive.com/documentation/miner, Feb. 2019.

[10] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code. In Proc. of the International
World Wide Web Conference (WWW), 2010.

[11] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle: Fast and
precise in-browser javascript malware detection. In Proc. of USENIX Security
Symposium, 2011.

[12] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at
browser-based cryptojacking. In Proc. of IEEE Security and Privacy on the
Blockchain Workshop, 2018.

[13] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. F. Bastien. Bringing the web up to speed with
WebAssembly. In Proc. of ACM SIGPLAN International Conference on
Programming Languages Design and Implementation (PLDI), pages 185–200,
2017.

[14] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z. Qian, and H. Duan. How you get shot in the back: A systematical study
about cryptojacking in the real world. In Proc. of ACM Conference on
Computer and Communications Security (CCS), Oct. 2018.

[15] D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy,
S. Savage, N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: Mone-

https://adguard.com/en/blog/crypto-mining-fever/
https://adguard.com/en/blog/crypto-mining-fever/
https://theblog.adobe.com/adobe-flash-update/
http://asmjs.org/faq.html
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html
https://blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://coinhive.com/documentation/miner
https://coinhive.com/documentation/miner

tizing stolen cycles. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2014.

[16] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna.
Revolver: An automated approach to the detection of evasive web-based
malware. In Proc. of USENIX Security Symposium, 2013.

[17] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and D. Xu.
J-force: Forced execution on javascript. In Proc. of the International World
Wide Web Conference (WWW), 2017.

[18] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking
internet malware. In Proc. of IEEE Symposium on Security and Privacy,
2012.

[19] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos,
and G. Vigna. An in-depth look into drive-by mining and its defense. In Proc.
of ACM Conference on Computer and Communications Security (CCS), Oct.
2018.

[20] B. Krebs. Who and What Is Coinhive? Website https://
krebsonsecurity.com/2018/03/who-and-what-is-coinhive, Mar. 2018.

[21] G. Maisuradze, M. Backes, and C. Rossow. Dachshund: digging for and
securing against (non-) blinded constants in jit code. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2017.

[22] J. McConnell. Webassembly support now shipping in all major browsers.
Website https://blog.mozilla.org/blog/2017/11/13/webassembly-in-
browsers/, Nov. 2017.

[23] MDN Web Docs. Proxy. Website https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Proxy, Feb. 2019.

[24] Microsoft Windows Blogs. A break from the past, part 2: Say-
ing goodbye to activex, vbscript, attachevent. Website https:
//blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-
past-part-2-saying-goodbye-to-activex-vbscript-attachevent/,
May 2015.

[25] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009.
URL http://www.bitcoin.org/bitcoin.pdf.

[26] S. Özkan. CVE Details. http://www.cvedetails.com.
[27] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and preven-

tion of drive-by-download attacks. In Proc. of Annual Computer Security
Applications Conference (ACSAC), 2010.

[28] J. D. P. Rodriguez and J. Posegga. CSP & Co. Can Save Us from a Rogue
Cross-Origin Storage Browser Network! But for How Long? In Proc. of ACM
Conference on Data and Application Security and Privacy (CODASPY),
2018.

[29] J. D. P. Rodriguez and J. Posegga. Rapid: Resource and api-based de-
tection against in-browser miners. In Proc. of Annual Computer Security
Applications Conference (ACSAC), 2018.

[30] A. Rossberg. Webassembly core specification. W3C First Public Working
Draft, Feb. 2018. URL https://www.w3.org/TR/2018/WD-wasm-core-1-
20180215.

19

https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers/
https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
http://www.bitcoin.org/bitcoin.pdf
http://www.cvedetails.com
https://www.w3.org/TR/2018/WD-wasm-core-1-20180215
https://www.w3.org/TR/2018/WD-wasm-core-1-20180215

[31] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld. Digging into browser-
based crypto mining. In Proc. of Internet Measurement Conference (IMC),
2018.

[32] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1986.

[33] “Seigen”, M. Jameson, T. Nieminen, “Neocortex”, and A. M. Juarez.
Cryptonight hash function. CryptoNote Standard 008, Mar. 2008. URL
https://cryptonote.org/cns/cns008.txt.

[34] B. Stock, B. Livshits, and B. Zorn. Kizzle: a signature compiler for detecting
exploit kits. In Proc. of Conference on Dependable Systems and Networks
(DSN), 2016.

[35] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar,
and N. Borisov. Mining on someone else’s dime: Mitigating covert mining
operations in clouds and enterprises. In Proc. of International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), pages 287–310,
2017.

[36] N. van Saberhagen. Cryptonote v2.0. Technical report, CryptoNote, Oct.
2013.

[37] W3C WebAssembly Community Group. Webassembly design documents.
Website https://webassembly.org, Jan. 2019.

[38] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao. Seismic: Secure
in-lined script monitors for interrupting cryptojacks. In Proc. of European
Symposium on Research in Computer Security (ESORICS), 2018.

[39] Wasabi. Dynamic Analyis Framework. Website http://wasabi.software-
lab.org, Feb. 2019.

[40] C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck. Comprehensive
analysis and detection of flash-based malware. In Proc. of Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), pages 101–
121, July 2016.

[41] W. Xu, F. Zhang, and S. Zhu. Jstill: mostly static detection of obfuscated ma-
licious javascript code. In Proc. of ACM Conference on Data and Application
Security and Privacy (CODASPY), 2013.

[42] A. Zakai. Why webassembly is faster than asm.js. Web-
site https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-
than-asm-js/, Mar. 2017.

20

https://cryptonote.org/cns/cns008.txt
https://webassembly.org
http://wasabi.software-lab.org
http://wasabi.software-lab.org
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/

	New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild

